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Lecture 11 – Face detection using the Viola Jones method
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What can you do after today?
 Describe the concept of face detection
 Describe the concept of Haar features
 Compute the values of 2, 3 and 4 rectangle Haar features
 Describe the integral image
 Compute the sum of pixels values in a rectangle using an integral image
 Describe the concept of a weak classifier
 Describe how several weak classifiers can be combined into a strong 

classifier
 Describe the attentional cascade
 Describe how faces can be detected using a moving window
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Face detection
 First problem

– Analyze a window in an image
– Is there a face in that window?
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Face detection
 Slightly more advanced

– Analyze many windows in an 
image

– How many (if any) windows
contain faces?



DTU Compute

2025Image Analysis6 DTU Compute, Technical University of Denmark

Face detection
 Ideal

– Analyze (almost) all possible 
windows in an image

– How many (if any) windows
contain faces?
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What is needed?
 A fast method to determine 

if a window contains a face
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Primary task – image feature based classification

Image 
feature 
extraction

Feature 
based 
classification

Face Not face
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Viola Jones – fast features and smart classification

Many image 
features 
very fast

Boosted 
cascade 
classifier

Face Not face
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Training data
 Face images:

– 4916 hand labelled faces
– Aligned and scaled to 24x24 pixels

 Non-face images:
– 9544 images with no faces
– 350 million sub-windows sampled from 

these
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Viola Jones – fast features and smart classification

Many image 
features 
very fast

Boosted 
cascade 
classifier

Face Not face



DTU Compute

2025Image Analysis13 DTU Compute, Technical University of Denmark

Haar features
 Alfred Haar (1885-1933)

– Hungarian Mathematician
 Introduced the Haar wavelet in 1909
 A wavelet is a wave-like oscillation 

with an amplitude that begins at zero, 
increases or decreases, and then 
returns to zero one or more times. 

 Simplest possible wavelet

https://en.wikipedia.org/wiki/Haar_wavelet

https://en.wikipedia.org/wiki/Wavelet
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Haar features

A B C D

Two rectangle features

Three rectangle feature

Four rectangle feature

Feature =              -
Sum of 
pixel 
values 
in image

Sum of 
pixel 
values 
in image
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One Haar feature

A

Feature = 254+198+20+208+113+222-154-21-67-58-167-233 = 1015-700 = 315
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Fast computing of Haar features
 Even for small Haar features, there are quite 

a lot of basic operations
 The larger the Haar feature, the more 

operations
We need a fast way to compute Haar features

24 x 24 pixels
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Fast computation of Haar features – the integral image
 In an integral image the pixel 

value is:
– The sum of pixel above it and to 

the left of it in the original image
– Including the pixel itself

 Can be computed very fast
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Using the integral image
We want to compute the 

pixel sum in the rectangle
Defined by four corners: 1, 

2, 3, 41 2

3 4
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Using the integral image
Define four regions:

– A, B, C, D
 The sum of pixels in the area

– A+B+C+D is the value of the 
integral image at point 4

1 2

3 4

A B

C D
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Using the integral image
 The sum of pixels in the area

– A+B is the value of the integral 
image at point 2

– A+C is the value of the integral 
image at point 3

1 2

3 4

A B

C D
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Using the integral image – short notation
 The sum of pixels in the area

– ii(2) = A+B
– ii(3) = A+C
– ii(4) = A+B+C+D
– ii(1) = A

– ii(4)-ii(3)-ii(2) = D – A

 ii(4)-ii(3)-ii(2)+ii(1) = D

1 2

3 4

A B

C D
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Course evaluation
 Very important to get your feedback on the course

 Please do it now – log into DTU Inside and fill in the evaluation

 What works well – so we should keep it and strengthen that part

 What can be improved and how?

 The question about ”The teacher gave me feedback on my progress”
– Very hard with large courses
– We try with quizzes, TAs, exercise solutions
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Haar features in an image window
 Image window of 24 x 24 pixels
 All possible sizes and shapes of Haar features
More than 180.000 features according to Viola 

and Jones
 They are overcomplete – meaning there is a 

very high redundancy
We need feature selection

24 x 24 pixels
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Possible features

𝑓𝑓1 =

𝑓𝑓2 =

𝑓𝑓3 =

𝑓𝑓4 =

𝑓𝑓5 =

𝑓𝑓6 =

𝑓𝑓7 =

𝑓𝑓8 =

𝑓𝑓180000 =…



DTU Compute

2025Image Analysis34 DTU Compute, Technical University of Denmark

Feature selection – from the article

• There are over 180,000 rectangle features associated with each image sub-
window, a number far larger than the number of pixels.

• Even though each feature can be computed very efficiently, computing the 
complete set is prohibitively expensive.

• Our hypothesis, which is borne out by experiment, is that a very small 
number of these features can be combined to form an effective classifier.

• The main challenge is to find these features
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Learning Classification Functions
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Weak classifier
ℎ𝑗𝑗 𝑥𝑥 = �1 if 𝑝𝑝𝑗𝑗𝑓𝑓𝑗𝑗 𝑥𝑥 < 𝑝𝑝𝑗𝑗𝜃𝜃𝑗𝑗

0 otherwise

𝑥𝑥 = 24 x 24 sub-
window

𝑓𝑓𝑗𝑗 = Feature value computed on the sub-window

𝑝𝑝𝑗𝑗 ∈ [−1, 1] Parity – determines if the feature value should be positive or 
negative 

𝜃𝜃𝑗𝑗 Feature threshold
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Weak classifier
ℎ𝑗𝑗 𝑥𝑥 = �1 if 𝑝𝑝𝑗𝑗𝑓𝑓𝑗𝑗 𝑥𝑥 < 𝑝𝑝𝑗𝑗𝜃𝜃𝑗𝑗

0 otherwise

𝑥𝑥 = 𝑓𝑓𝑗𝑗  = =  2049

𝑝𝑝𝑗𝑗 = 1 𝜃𝜃𝑗𝑗 = 456

→  1 ∗ 2049 < 1 ∗ 456 → ℎ𝑗𝑗  = 0

Learnt by training:
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What is this parity?
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Weak classifier
ℎ𝑗𝑗 𝑥𝑥 = �1 if 𝑝𝑝𝑗𝑗𝑓𝑓𝑗𝑗 𝑥𝑥 < 𝑝𝑝𝑗𝑗𝜃𝜃𝑗𝑗

0 otherwise

𝑥𝑥 = 𝑓𝑓𝑗𝑗  = =  2049

𝑝𝑝𝑗𝑗 = −1 𝜃𝜃𝑗𝑗 = 456

→  −1 ∗ 2049 < −1 ∗ 456 → ℎ𝑗𝑗  = 1

Learnt by training:
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Creating a strong classifier from weak classifiers

ℎ1  =

ℎ2  =

…

ℎ  = 𝛼𝛼1ℎ1 + 𝑎𝑎2ℎ2 + ⋯+ 𝑎𝑎𝑇𝑇ℎ𝑇𝑇

Learnt using AdaBoost
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Boosted features – good performance but not enough
 Frontal face classifier with

– T=200 features
– Detection rate 95%
– False positives 1 in 14084
– 0.7 seconds for a 384 x 288 

ℎ1 = 𝛼𝛼1ℎ1 + 𝑎𝑎2ℎ2 + ⋯+ 𝑎𝑎𝑇𝑇ℎ𝑇𝑇
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The Attentional Cascade
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Image Attention
 The process of focusing on specific parts of an image

– Followed by fine grained analysis of selected windows

Focusing on potential face regions
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Cascaded classifier

Input image windows

Potential 
face? No – forget it!

Potential 
face? No – forget it!

Also called a degenerate decision tree
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The attentional cascade
Quickly reject negative sub-windows

– Detect almost all positive sub-windows
– False-negatives close to zero

 Keep all potential face windows
– Using the training set to find weights that 

fulfils this criterion

 Later more complex classifier
– Low false positive rate
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Training a cascade

Potential 
face? No – forget it!

Potential 
face? No – forget it!

ℎ  = 𝛼𝛼1ℎ1 + 𝑎𝑎2ℎ2 + ⋯+ 𝑎𝑎𝑇𝑇ℎ𝑇𝑇

Learnt using AdaBoost

ℎ  = 𝛼𝛼1ℎ1 + 𝑎𝑎2ℎ2 + ⋯+ 𝑎𝑎𝑇𝑇ℎ𝑇𝑇

Learnt using AdaBoost
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First stage classifier
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Final classifier

 38 stages (step in the cascade)
 Total 6000 features (over the entire 

cascade)
 Faces are detected using on average 10 

features per sub-window
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Finding all faces in an image
 Slide a sub-window over the 

entire image
Do a face detection for all 

positions
 Scale the features in a 

certain interval
– To find faces of different sizes
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Conclusion
One of the most important 

algorithms before deep 
learning

Uses many interesting 
concepts
– Attention
– Boosted weak classifiers
– Very fast feature computation
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Demo
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Next week(s)
 Statistical models of shape and appearance
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